Fluorescence Resonance Energy Transfer in Quantum Dot-Protein Kinase Assemblies

نویسندگان

  • Ibrahim Yildiz
  • Xinxin Gao
  • Thomas K. Harris
  • Françisco M. Raymo
چکیده

In search of viable strategies to identify selective inhibitors of protein kinases, we have designed a binding assay to probe the interactions of human phosphoinositide-dependent protein kinase-1 (PDK1) with potential ligands. Our protocol is based on fluorescence resonance energy transfer (FRET) between semiconductor quantum dots (QDs) and organic dyes. Specifically, we have expressed and purified the catalytic kinase domain of PDK1 with an N-terminal histidine tag [His(6)-PDK1(DeltaPH)]. We have conjugated this construct to CdSe-ZnS core-shell QDs coated with dihydrolipoic acid (DHLA) and tested the response of the resulting assembly to a molecular dyad incorporating an ATP ligand and a BODIPY chromophore. The supramolecular association of the BODIPY-ATP dyad with the His(6)-PDK1(DeltaPH)-QD assembly encourages the transfer of energy from the QDs to the BODIPY dyes upon excitation. The addition of ATP results in the displacement of BODIPY-ATP from the binding domain of the His(6)-PDK1(DeltaPH) conjugated to the nanoparticles. The competitive binding, however, does not prevent the energy transfer process. A control experiment with QDs, lacking the His(6)-PDK1(DeltaPH), indicates that the BODIPY-ATP dyad adsorbs nonspecifically on the surface of the nanoparticles, promoting the transfer of energy from the CdSe core to the adsorbed BODIPY dyes. Thus, the implementation of FRET-based assays to probe the binding domain of PDK1 with luminescent QDs requires the identification of energy acceptors unable to interact nonspecifically with the surface of the nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembled nanoscale biosensors based on quantum dot FRET donors.

The potential of luminescent semiconductor quantum dots (QDs) to enable development of hybrid inorganic-bioreceptor sensing materials has remained largely unrealized. We report the design, formation and testing of QD-protein assemblies that function as chemical sensors. In these assemblies, multiple copies of Escherichia coli maltose-binding protein (MBP) coordinate to each QD by a C-terminal o...

متن کامل

Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity

We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coo...

متن کامل

Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies.

We demonstrate the use of a hybrid fluorescent protein semiconductor quantum dot (QD) sensor capable of specifically monitoring caspase 3 proteolytic activity. mCherry monomeric red fluorescent protein engineered to express an N-terminal caspase 3 cleavage site was ratiometrically self-assembled to the surface of QDs using metal-affinity coordination. The proximity of the fluorescent protein to...

متن کامل

Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly

Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET)-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD) donor -mCherry ac...

متن کامل

Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes.

Fluorescence resonance energy transfer (FRET) characteristics, including the efficiency, donor-acceptor distance, and binding strength of six fluorescent protein (FP)-quantum dot (QD) pairs were quantified, demonstrating that FPs are efficient acceptors for QD donors with up to 90% quenching of QD fluorescence and that polyhistidine coordination to QD core-shell surface is a straightforward and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Biomedicine and Biotechnology

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007